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Skilled or Unskilled, but Still Unaware of It: How Perceptions of
Difficulty Drive Miscalibration in Relative Comparisons
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People are inaccurate judges of how their abilities compare to others’. J. Kruger and D. Dunning (1999,
2002) argued that unskilled performers in particular lack metacognitive insight about their relative
performance and disproportionately account for better-than-average effects. The unskilled overestimate
their actual percentile of performance, whereas skilled performers more accurately predict theirs.
However, not all tasks show this bias. In a series of 12 tasks across 3 studies, the authors show that on
moderately difficult tasks, best and worst performers differ very little in accuracy, and on more difficult
tasks, best performers are less accurate than worst performers in their judgments. This pattern suggests
that judges at all skill levels are subject to similar degrees of error. The authors propose that a
noise-plus-bias model of judgment is sufficient to explain the relation between skill level and accuracy

of judgments of relative standing.
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Research on overconfidence has found that subjective and ob-
jective measures of performance are poorly correlated (see Alba &
Hutchinson, 2000, for a comprehensive review). Whereas most of
this research compares confidence in one’s estimates with one’s
actual performance, one particular line focuses on people’s accu-
racy in estimating their ability compared with their peers. Such
judgments are important in many contexts. In many societies,
success in school, jobs, entrepreneurship, sports, and many other
activities is largely a function of how one’s ability and perfor-
mance compare to those of others. Thus, the ability to estimate
one’s relative standing can have a major impact on one’s life
choices and one’s satisfaction with those choices.

The most common finding in this area is a “better than average”
effect: On average, people think that they are above average in
many social and intellectual domains. However, the inaccuracy of
this perception is not uniform. Empirically, Kruger and Dunning
(1999, p. 1132) found across four studies that the “bottom quartile
participants accounted for the bulk of the above average effects
observed,” with only a small amount of inflation accounted for by
the rest of the participants. Figure 1 summarizes these results.
Kruger and Dunning (1999) attributed the pronounced overestima-
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tion by the worst performers to a lack of metacognitive skill—the
worst performers lack the knowledge required both to perform
well and to evaluate whether they have performed well. On the
other hand, people who are more skilled have both the ability to
perform well and the ability to accurately assess the superiority of
their performance. Borrowing from the title of Kruger and Dun-
ning’s article, we refer to this as the “unskilled—unaware hypoth-
esis.” In explaining the above-average effect, Kruger and Dunning
(1999) therefore proposed that “focusing on the metacognitive
deficits of the unskilled may help to explain this overall tendency
toward inflated self-appraisals” (p. 1122).

Explanations for the Unskilled—Unaware Pattern

The unskilled—unaware hypothesis has logical and intuitive
appeal. As Kruger and Dunning (1999) pointed out, the skills
required to write a grammatically correct sentence are similar to
the skills required to recognize a grammatically correct sentence.
The most incompetent individuals overstate their abilities in many
contexts. One of this article’s authors spent several years leading
horseback rides and was struck by the number of incompetent
riders who actually put their lives in danger by claiming that they
were highly skilled. However, Kruger and Dunning looked at only
one judgment context—one in which participants on average
believe that they are above average. In fact, research by Kruger
(1999) showed that this condition is not as universal as it was once
thought to be. Kruger found that on easy tasks (such as using a
computer mouse), people estimate their performance as better than
average, whereas on hard tasks (such as juggling), people estimate
themselves as worse than average. He argued that participants
anchor on their perception that they will perform well or poorly in
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Figure 1. Participants’ estimates of the percentiles of their performances

relative to their peers, by quartile of actual performance in four experi-
ments from Kruger and Dunning (1999). This pattern of results suggests
that unskilled participants are more miscalibrated than are skilled partici-
pants. Wason = Wason selection task.

an absolute sense and adjust insufficiently for the fact that the task
may be easy or hard for everyone (see also Chambers & Winds-
chitl, 2004).

Do the unskilled contribute the bulk of erroneous assessments in
more difficult tasks as well, when the average percentile estimate
is unbiased or negatively biased? This question is important be-
cause the answer can help distinguish the unskilled—unaware hy-
pothesis from a simpler alternative explanation for the pattern
illustrated in Figure 1. The alternative hypothesis, proposed by
Krueger and Mueller (2002; see also Ackerman, Beier, & Bowen,
2002), is that people at all skill levels are prone to similar diffi-
culties in estimating their relative performance. Their subjective
estimates of performance are imperfectly correlated with objective
performance measures, so their estimates of relative performance
regress toward the mean.' Additionally, people at all skill levels
make percentile estimates that are biased upward. In other words,
regardless of skill level, people do not have much knowledge about
how they compare with others, and the average estimates of poor
and good performers tend to be similar and high. Good performers
are more accurate, but not because of greater metacognitive skill.
Rather, when most participants estimate their performance as
better than average, those who actually are above average are
necessarily closer to the truth.

Kruger and Dunning (1999, 2002) and Krueger and Mueller
(2002) examined judgments of percentile on tasks with overall
positive biases. The two explanations are difficult to distinguish in
that context. In a published exchange, the two sets of authors
focused on the question of whether metacognitive skills can be
shown to mediate the difference between good and poor perform-
ers, and they disagreed. Kruger and Dunning argued that Krueger
and Mueller’s participants showed regression because of the mod-

est reliability of the task. In the end, the evidence provided by
Kruger and Dunning and Krueger and Mueller remains equivocal
on whether population-level errors in interpersonal comparisons
should be attributed mainly to the metacognitive failings of poor
performers or the lack of insight among all participants.

In the present studies, we take a different approach to investigate
the cognitive processes underlying judgments of percentile. We
vary task difficulty by selecting easier and harder domains and by
varying the criteria for success. Our tasks include some for which
there is no overall bias and some for which there is a negative
(worse than average) bias.> We also address the reliability issue
raised by Kruger and Dunning (1999, 2002) and ultimately use a
split-samples method that removes regression effects due to task
ambiguity and luck. These approaches permit us to test an exten-
sion and generalization of Krueger and Mueller’s (2002) basic
hypothesis, which we call a noise-plus-bias model. We propose
that people at all performance levels are equally poor at estimating
their relative performance (e.g., their judgments are noisy) and
equally prone to overestimating their percentile on tasks that are
perceived to be easy and underestimating it on tasks that are
perceived to be hard (e.g., their judgments reflect task-induced
bias). The results expected under this hypothesis are illustrated in
Figure 2 (see the Appendix for the simulation model that generated
these results).

An important implication of the noise-plus-bias account is that
higher skilled performers are better judges of their percentile only
for easy tasks. For difficult tasks, the opposite is true: The most
skilled are the least accurate. Although poor performers account
for the bulk of the above-average effect in easy tasks, good
performers account for the bulk of the below-average effect in
difficult tasks. We wish to emphasize that in the noise-plus-bias
account, the apparent accuracy of good performers on easy tasks
and poor performers on difficult tasks does not reflect insight, but
is an accident of the match between actual percentile on a task and
task-induced bias in perceived percentile. (This is why the most
accurate participants in Kruger and Dunning’s 1999, 2002, studies
are those in the upper-middle percentiles. Such participants, by
accident as much as by insight, report their position more accu-
rately than do those in the top percentiles.)

This noise-plus-bias argument parallels an earlier critique made
of the depressive realism literature. The initial finding in this
research was that moderately depressed people make accurate
judgments of their degree of control in situations with low control,
whereas the nondepressed overestimated their control (Alloy &
Abramson, 1979; Martin, Abramson, & Alloy, 1984). However,
the question was raised, Do depressed people better discriminate
degrees of control, or do they just possess a different mean level of
bias in their estimates? When depressives and nondepressives were

! A similar explanation has been offered for miscalibration in confidence
judgments in which overconfidence is greatest for those who are least
accurate and for items that are most difficult (Erev, Wallsten, & Budescu,
1994; Gigerenzer, Hoffrage, & Kleinbolting, 1991; Juslin, 1993, 1994;
Klayman, Soll, Gonzalez-Vallejo, & Barlas, 1999; Soll, 1996; Wallsten,
Budescu, Erev, & Diederich, 1997).

2 Krueger and Mueller (2002) also manipulated difficulty on their task,
but their manipulation did not produce percentile estimates below the 60th
percentile.
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Figure 2. Hypothetical estimates of performance percentile by actual
quartile of performance on tasks of varying difficulty, assuming that
everyone is equally unaware of his or her ability and equally prone to the
overall biasing effects of task difficulty.

compared in situations that permitted control, depressives under-
estimated their degree of control and nondepressives appeared
more accurate. Alloy and Abramson concluded in a later collabo-
ration (Dykman, Abramson, Alloy, & Hartlage, 1989; see also
Coyne & Gotlib, 1983) that “neither depressed nor nondepressed
subjects displayed differential accuracy in terms of being able to
vary their judgments to achieve accuracy across changing situations”
(p. 442), and they found no evidence of “a characteristic tendency for
either group to process information in either a biased or unbiased
way” (p. 442). In this literature, it turned out that the accuracy of
perceived control was largely an accident of whether personal dispo-
sitions (a chronic tendency to estimate high or low levels of control)
matched the degree of actual control available in a task.

We propose that if judgments of percentile show the pattern
displayed in Figure 2 (i.e., parallel lines with modest upward
slopes), then noise and bias across all performers provide a suffi-
cient explanation for the unskilled—unaware pattern in Figure 1.
There is no need to appeal to metacognitive differences between
better and worse performers. On the other hand, significant depar-
tures from this pattern would suggest that such differences may be
important. Figure 3, for example, shows one plausible instantiation
of the unskilled—unaware hypothesis when it is extended to diffi-
cult tasks. Here, worse performers—Ilacking metacognitive in-
sight—are more prone to noise and task-induced bias, whereas
better performers are relatively immune to these errors. (See the
Appendix for details of the simulation.)

Although Kruger and Dunning did not explicitly extend their
theory of metacognitive differences to tasks that yield worse-than-
average effects, they did propose that “for the incompetent to
overestimate themselves, they must satisfy a minimal threshold of
knowledge, theory, or experience that suggests to themselves that
they can generate correct answers” (p. 1132). As counterexamples,
the authors listed tasks that are impossible for most people to
perform: translating Slovenian proverbs, reconstructing 8-cylinder
engines, and diagnosing acute disseminated encephalomyelitis.
Kruger and Dunning expected that most people would recognize
that they are poor performers on these tasks and, if they showed a

bias, would rate themselves as worse than their peers (presumably
as a kind of floor effect). They did not, however, explicitly discuss
how the minority of competent performers would assess them-
selves on these tasks.

One interpretation of these claims is that there is a boundary to
the unskilled—unaware hypothesis such that the relationship weak-
ens in domains where average perceived percentile estimates are
near or below the 50th percentile. Thus, for domains where the
average perception is above the 50th percentile, a performance—
metacognition association holds such that those who perform
worse at a task are less able to assess their own performances and
those of others, and the bulk of the error in judging relative
performance is produced by poor performers. However, as the
average perceived percentile for a task decreases, so does the
performance—metacognition association. We believe that this
bounded version of the unskilled—unaware account is an interest-
ing possibility but would argue that the noise-plus-bias account
generalized from Krueger and Mueller (2002) is a sufficient and
more parsimonious explanation for the pattern shown in Figure 2.
We return to this issue in the General Discussion.

Alternative Measures of Inaccuracy

The noise-plus-bias account suggests some specific method-
ological improvements for evaluating inaccuracy in perceived per-
formance. The main measure of accuracy used by Kruger and
Dunning is the difference between perceived percentile and actual
percentile, which they term miscalibration. However, the use of
miscalibration as a measure has limitations. One of the terms in the
calculation, perceived percentile, is sensitive to task-induced bias
(Kruger, 1999): Higher percentiles are reported on tasks that feel
easy than on tasks that feel hard. Task-induced bias creates a
discrepancy between perceived percentile and actual percentile
that is not attributable to metacognitive differences. Thus, on tasks
that induce an upward bias, poor performers appear more miscali-
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Figure 3. Hypothetical estimates of performance percentile by actual
quartile of performance on tasks of varying difficulty, assuming that less
skilled participants are simply more error-prone in estimating their relative
performance. Less skilled participants’ estimates will regress more, and the
mean to which they regress will be a function of task difficulty.
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brated than top performers; the opposite pattern occurs on tasks
that induce a downward bias. We present an additional measure of
accuracy, which we term sensitivity, that generally is not influ-
enced by overall task-induced bias. We test whether the correlation
between percentile judgments and actual percentiles differs be-
tween bottom and top performers.

The noise-plus-bias account implies a second methodological con-
sideration. Participants found in the lowest quartile or the highest
quartile on a given test fall within these segments of a distribution
partly because of true ability and partly because of bad and good luck,
respectively. Even in tasks that are largely skill based, judges cannot
perceive all the elements of good and bad luck that contributed to their
high or low performance. Consequently, participants’ estimates of
their performance will tend to be regressive, but regressiveness will be
counted as error in their perceptions. That is, estimates of miscalibra-
tion for the best and worst performers will be exaggerated. In our final
experiment, we adapt a split-sample method developed by Klayman,
Soll, Gonzalez-Vallejo, and Barlas (1999) in studies of overconfi-
dence and also used by Krueger and Mueller (2002). This method
reduces the contribution of statistical regression to miscalibration,
removing this source of bias from the measure of judgmental error.
Specifically, we separated participants according to their actual per-
centile on one subtask and measured their degree of miscalibration on
the other subtask.

In the remainder of this article, we describe three experiments
that manipulated the perceived difficulty of tasks and hence par-
ticipants’ beliefs about their percentile. By sampling a wider range
of judgment contexts and taking regression effects into account,
these studies provide evidence on a fundamental question about
the psychological processes underlying comparative judgments:
Does miscalibration reflect the poor insight of poor performers or
the poor insight of all performers?

Study 1
Method

Participants. Ninety University of Chicago students were recruited
using posted advertisements and were paid two dollars for participating in
this 15-min experiment.

Design. 1In this between-participants design, 47 students took an easier
quiz about University of Chicago trivia, and 43 students took a harder quiz
about University of Chicago trivia. Care was taken to ensure that the harder
task was not below some “minimal threshold of knowledge, theory, or
experience” as cautioned by Kruger and Dunning (1999, p. 1132); the
harder trivia questions were answered well above chance level (as, of
course, were the easier trivia questions).

Procedure. Participants were told that they would be taking a 20-
question quiz about the University of Chicago. They were given a two-page
quiz (either easier or harder). After taking the quiz, participants estimated
the number of questions out of 20 that they thought they would get right,
the percentile rank into which they believed they would fall in relation to
their peers in the study, and the difficulty of the task for themselves and for
the average participant on a scale ranging from 1 (very easy) to 5 (very
difficult). The use of the percentile scale was explained in detail. For half
of the participants, performance estimates appeared first, followed by the
difficulty questions, and for half, these segments were presented in the
reverse order.

Results

Manipulation check. The order of the performance estimates
and the difficulty estimates did not lead to a difference in esti-

mates, so we collapsed across orders. As expected, the harder trivia
resulted in a lower actual score than did the easier trivia (M =
10.62 vs. M = 14.64), 1(87) = 7.53, p < .001, d = 1.60, and
performance on both tasks was better than the chance level of 6.67,
ts > 10.86, ps < .001. The harder trivia were also rated as
significantly more difficult than the easier trivia (M = 3.91 vs.
M = 2.96), t(87) = 524, p < .001,d = 1.11.

Percentile estimates. Next, we looked at percentile estimates
at each level of difficulty. Participants estimated their performance
to be in the 62nd percentile for the easier trivia and in the 48th
percentile for the harder trivia, #(88) = 3.66, p < .001, d = .77.
This replicates the results of Kruger (1999) where the more diffi-
cult the task, the lower the overall percentile estimate. As hoped,
two distinct levels of difficulty were sampled in this study. In this
case, our harder trivia seem to have been only moderately difficult,
whereas the easier trivia were indeed easy. Therefore, we call our
harder condition the “moderate” condition.

Asymmetry by quartiles. We looked for a performance—
metacognition relationship in two ways. The first involved looking
at miscalibration measures, as introduced by Kruger and Dunning
(1999), measuring the difference between estimated performance
and actual performance. The second method involved looking at
sensitivity to relative standing, measuring the correlation between
estimated performance and actual performance.

To examine how estimated percentiles varied with skill level,
we divided the participants in each condition into four groups on
the basis of actual performance (following Kruger & Dunning,
1999). These groups represented four quartiles of performance
relative to other participants in that condition. As shown in Figure
4, percentile estimates were fairly uniform across quartiles on both
the easy and the moderate task and were lower, on average, on the
moderate task. An analysis of variance (ANOVA) on percentile
estimates with the independent variables of difficulty and quartile
showed the main effect of task difficulty already discussed. There
was also a marginal main effect of quartile, F(3, 81) = 2.60, p =
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Figure 4. Participants’ estimates of performance percentile by quartile of
actual performance on easier and harder tests of University of Chicago
trivia in Study 1.
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.058, m* = .09, but no significant interaction. The main effect of
quartile was explored by regressing percentile estimates on actual
percentiles and revealed a significant linear relationship, B = .142,
SE = .068, B = .219, «(87) = 2.10, p = .039.

Paired ¢ tests confirmed some of Kruger and Dunning’s (1999)
findings. In both conditions, those in the lowest quartile overesti-
mated their mean percentile, and those in the highest quartile
underestimated theirs. Participants in the lowest quartile on the
easy trivia were actually in the 12th percentile but thought they
would be in the 57th, #(11) = 8.35, p < .01, d = 2.32; on the
moderate trivia, these participants were actually in the 9th percen-
tile but thought they would be in the 48th, #(7) = 4.25, p = .004,
d = 1.40. Participants in the highest quartile on the easy trivia
were actually in the 89th percentile but thought they would be in
the 72nd, #9) = —3.09, p = .013, d = —.93; on the moderate trivia,
these participants were actually in the 86th percentile but thought they
would be in the 58th, #10) = —4.43, p = .001,d = —1.28.

To compare the magnitude of miscalibration between highest
and lowest performers in a direct statistical test, we coded errors as
estimated percentile minus actual percentile for the lowest quartile
and actual percentile minus estimated percentile for the highest
quartile, and then compared the two quartiles. (This simple trans-
formation preserves the variance around the means but gives the
means the same sign so that they can be tested against each other.)
On the easy quiz, we replicated the asymmetry observed by Kruger
and Dunning (1999); the lowest quartile was much more miscali-
brated than was the highest (M s = 44.34 vS. My e = 16.84),
1(20) = 3.59, p = .002, d = 1.54. However, in the moderate
condition, the first and fourth quartiles did not differ significantly
(Mygwese = 39.23 vs. M, =28.13),1(17) = 1.03,p = 32,d =
A48.

A similar comparison of miscalibration was made with respect
to judgments of absolute performance, in which we compared
estimated minus actual number of correct answers for participants
in the lowest quartile with actual minus estimated number of
correct answers for participants in the highest quartile. The easier
condition showed no significant difference in miscalibration be-
tween the lowest and highest quartiles (M), = 1.08 vs.
Myighese = 3-10, #20) = —1.48, p = .156, d = —.63). However,
in the moderate condition, the lowest quartile was significantly less
miscalibrated than was the highest quartile (M, .o = —0.38 vs.
Miyighese = 4.73,1(17) = —=3.47, p = .003, d = —1.60. This pattern
of miscalibration on estimated scores suggests that participants of
both skill levels had only modest insight into their scores.?

Participants’ awareness may be manifested in ways other than
the difference between perceived performance and true perfor-
mance. Perhaps there are skill-level differences in how sensitive
participants are to their relative standing on these performance
measures. In other words, skilled performers’ estimates might be
better correlated with the truth than unskilled performers’ esti-
mates, setting aside any general task-induced bias. To examine a
potential metacognitive difference in this way, we compared the
statistical relationship between estimated and actual performance
separately among bottom-half and top-half performers. The first
variable we examined was the relationship between actual and
perceived percentile. When percentile estimates were regressed on
actual percentiles for all performers, the standardized coefficients
were .253 in the easy condition and .215 in the moderate condition.
We then calculated the same regressions for bottom-half and

ighest

top-half performers separately and compared them using Chow’s
test for differences between coefficients drawn from independent
samples (Chow, 1960; Pindyck & Rubinfeld, 1998, pp. 133-134).
The standardized regression coefficients for the bottom-half per-
formers were not significantly lower than those for the top-half
performers on either trivia task, although the pattern of coefficients
was consistent with a metacognitive difference favoring the skilled
performers, Byouom = -134 vs. B, = .526, F(1,44) = 2.03,p =
.161, for the easier trivia and Byoyom = —-206 vs. B, = .235, F(1,
39) = 2.05, p = .160, for the moderately difficult trivia.* Turning
now to estimates of number correct, the relation between estimated
and actual scores in the sample as a whole was positive but not
significant, B, = -267, p = .069, and B,,,,qerare = -240, p = .126.
Chow tests showed that the standardized coefficient for the

3 It is possible to argue that we have violated the “minimum threshold”
standard required by Kruger and Dunning in this experiment. We point out
that the more difficult trivia here were not particularly difficult, as mea-
sured by either objective performance or subjective assessment. However,
to look more carefully at the possibility that participants were faced with an
impossible task in the “moderate” condition of Study 1, we conducted the
following analyses. The trivia in this experiment have a benchmark for
chance performance of 6.67 correct out of 20 questions. We assigned a
threshold of competence somewhat above chance, since it is likely that
some of the participants who performed slightly better than 6.67 correct
were actually incompetent but lucky. Though we inevitably discarded
participants who were competent but performed near chance due to bad
luck, we conservatively eliminated all participants who got fewer than nine
correct answers on the quizzes. We believe this is a sufficiently rigorous
test of whether the unskilled (but not “incompetent”) are unaware on tasks
of varying difficulty. However, one might regard the minimum threshold of
competence to be the subjective rather than the objective measure of
ability. Therefore, we also repeated our analysis eliminating all participants
who believed they would score fewer than nine points on the trivia. These
analyses showed no qualitative change in our results. When we limited our
tests to participants who got nine or more correct, the easier trivia test
showed the less skilled as more miscalibrated, Myes quarite = 42.95 vs.

ghest quartle — 16.91, #20) = 3.76, p = .001, but the moderate trivia test
showed little difference between the lowest and highest quartile’s miscali-
bration, Mi,yes quarite = 29-19 V8. Miignest quarile = 39-98, 1(14) = —0.72,
p = .485. Similarly, if we limited our tests to participants who merely
thought they would get nine or more correct, the less-skilled were signif-
icantly more miscalibrated on the easy trivia test, Mj,yes quarite = 4422 Vs,
Myighest quarite = 14.23, 1(18) = 3.77, p = .001, but not on the moderate
trivia test, Migyes quarite = 3845 V8. Myjgnest quarite = 2835, (9) = 1.26,
p = .239. Thus, even among the demonstrably competent or those who
think they are competent, the less skilled are not more unaware of their
standing than the skilled on more difficult tasks.

4 The Chow (1960) test examines whether a regression coefficient cal-
culated in one subgroup differs significantly from the same coefficient
calculated in a second subgroup. The test is comprised of the residual sum
of squares (RSS) from three regressions: one performed within each
subgroup and one using the pooled data. To examine only the differences
due to slope, we fixed the constants for the regressions within subgroup at
0 by standardizing the variables within subgroup first. The data used in the
pooled regression, therefore, were composed of the transformed data. With
one predictor variable, these sums of squares are combined to generate an
F ratio using the formula [RSS o cq — (RSS; + RSS,)I/[(RSS; + RSS,)/
(n; + n,)]. The degrees of freedom are 1, (n, + n,). (See Pindyck and
Rubinfeld, 1998, pp. 133-134.) Piecewise linear regressions (Pindyck &
Rubinfeld, 1998, pp. 136—137) yielded conclusions identical to those from
the Chow tests.
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bottom-half performers was not significantly different from that
for top-half performers on either the easy or the moderate trivia,
and the direction of the effects differed between the two conditions
(for easy trivia, Byoyom = 288 vs. By, = 478, F(1,44) = 48,p =
A491; for moderate trivia, Byoyom = -172 vs. By, = —.197, F(1,
39) = 1.41, p = .242). The observed patterns of sensitivity suggest
the possibility of a metacognition—performance relationship but
are not conclusive.

Discussion

As can be seen in Figure 4, percentile estimates varied only
slightly with actual performance. Difficulty lowered estimates for
low and high performers alike. Thus, in the absence of an overall
upward bias, the skilled and the unskilled were similarly accurate
in their percentile estimates. These results are consistent with the
hypothesis that estimating one’s percentile is difficult regardless of
skill level.

For both perceived percentile and perceived score, who appears
most accurate in terms of miscalibration depended on the difficulty
of the task; the moderately difficult task made unskilled partici-
pants look about as aware as skilled participants in terms of
percentile estimates and more aware than skilled participants in
terms of score estimates. The easier task made skilled participants
look more aware than unskilled participants in terms of percentile
estimates and equally aware as unskilled participants in terms of
score estimates. Other tests found only suggestive evidence that
top-half performers were more sensitive to relative standing than
were bottom-half performers. This possible difference is interest-
ing. However, it does not result in consistently better accuracy for
skilled performers. Rather, the difference in calibration between
skilled and unskilled participants depends mostly on the biasing
effects of task difficulty that span the spectrum of skills.

Study 2

The second experiment looked more closely at the psychologi-
cal underpinnings of the observed pattern by using tasks that were
perceived to be more difficult than those used in Study 1. Partic-
ipants perceived Study 1’s stimuli as easy and moderately difficult.
If unawareness is universal, then it will be the unskilled partici-
pants who will appear to be more aware of their percentile on more
difficult tasks, in which the average percentile estimate is less than
50. This is illustrated by the lowest line of Figure 2.

As in Study 1, we manipulated perceived difficulty by sampling
a variety of stimuli, but this time we compared what turned out to
be moderate and difficult conditions. We used two manipulations
to create the desired range of perceived difficulty: We selected
several domains of trivia questions that we expected to vary in
perceived difficulty, and we manipulated the strictness of the
criterion for judging an estimate to be correct. Our prediction was
that domains that were perceived to be more difficult and criteria
that were more exacting would lead to significantly lower per-
ceived percentiles.

We hypothesized that as the perception of task difficulty in-
creased, low performers would appear to be more calibrated and
high performers would appear less calibrated. If the task is difficult
enough to produce below-average estimates overall, low perform-
ers should be more accurate in their estimates than the high

performers are (as in the lowest line of Figure 2). We do not
suggest that poor performers are actually more perceptive than
high performers in these tasks. Rather, in a task in which everyone
is biased toward believing their performance is poor, those whose
performance truly is poor will appear to be right.

Method

Participants. Forty University of Chicago students were recruited with
posted advertisements and were paid 9 dollars for this 45-min experiment.

Design. Three variables were manipulated within participant: domain,
question set, and difficulty. There were five domains: college acceptance
rates, dates of Nobel prizes in literature, length of time pop songs had been
on the charts, financial worth of richest people, and games won by hockey
teams. For each domain, there were two subsets of 10 questions each.
These questions were selected randomly from available information
sources. Each 10-question subset was presented in either a harder or an
easier version. The more difficult version required participants’ estimates
to fall within a narrower range to be considered correct (e.g., within 5 years
of the correct date for the harder version vs. within 30 years for the easier
version).

The order of the 100 estimates was the same across participants, con-
sisting of 10 questions from each of the five domains, followed by another
10 questions from each of the 5 domains. The order of difficulty was
counterbalanced. Half the participants received the first five subsets of
questions in the harder version and the second five in the easier version.
For the other half, the first five subsets were in the easier version and the
second five in the harder version.

Two domains (financial worth of richest people and games won by
hockey teams) included tests that were so difficult or so easy that almost all
of the participants performed at the same level, making it hard to assign
meaningful percentiles of performance. We dropped these two domains
from the analyses.

Procedure. Participants were told that they would be making a series
of estimates about a range of topics. They were given a booklet containing
10 subsets of estimates preceded by an unrelated example. One page was
devoted to each subset of questions. For each of the 10 subsets, participants
indicated their predicted percentile rank, the difficulty of the task for
themselves, and the difficulty of the task for the average participant on a
scale ranging from 1 (very easy) to 10 (very difficult). Prior to each set of
10 questions, participants read an explanation of the required estimates,
along with information about the mean of the sample and the range in
which 90% of the sample fell. For instance, when making estimates of
years of Nobel Prizes in the easier version, participants read the following
passage:

In this section, you will estimate the year in which particular people
received the Nobel Prize in Literature. You should try to be accurate
within 30 years of the truth. These 10 Nobel Laureates were selected
randomly from the 100 Nobel Laureates in Literature. Within the 20
Laureates in this packet, the average year of the Nobel Prize is 1949,
and 90% of the Laureates fall between 1921 and 1985.

In the harder version of the test, participants had to give an estimate within
5 years of the actual year.

Results

Manipulation check. For each of the three dependent mea-
sures—actual performance, estimated performance, and estimated
difficulty—we performed a multivariate analysis of variance
(MANOVA) with domain and difficulty as within-participant vari-
ables and order (harder first or easier first) as a between-
participants variable. The difficulty manipulation worked: The
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harder conditions were perceived as significantly more difficult
(M = 7.94) than were the easier versions (M = 6.59), F(1, 35) =
30.43, p < .001, n* = .47. Harder and easier conditions also
differed significantly in actual performance (M = 19.84% correct
vs. M = 68.77% correct), F(1, 35) = 808.15, p < .001, n* = .96).

Percentile estimates. Overall, the mean percentile estimate
was 37.04. This was significantly less than 50, #(39) = —4.68, p <
.001. A MANOVA with domain, difficulty, and order as indepen-
dent variables showed that some domains were perceived as more
difficult than others (M yeges = 6.36, M, songs = 7-17, and

on e = 8-19), F(2,70) = 15.16, p < .001, n* = .30. Further-
more, the more difficult the domain seemed to participants, the
lower the percentile estimate (M gpepes = 4598, Moy songs =
39.47, and My e prije = 26.98, F(2, 70) = 14.25,p < .001, n* =
.29). Additionally, percentile estimates were lower in the harder
(narrow range) versions than in the easier versions, F(1, 35) =
22.57, p < .001, n* = .39 (see Table 1). In other words, average
percentile estimates decreased as tasks became more difficult
(through more exacting evaluation standards or through domain
differences). This replicates the effect reported by Kruger (1999).
There was no effect of order or any significant two-way interac-
tions. However, there was an unexpected three-way interaction
between domain, difficulty, and order, F(2, 70) = 7.18, p < .001,
n* = .17, the implications of which are unclear.

Asymmetry by quartiles. ~As shown in the two panels of Figure
5, the overall picture was one of a fairly uniform level of percentile
estimates across quartiles within each domain. For those in the
highest quartile, estimated percentiles were significantly lower
than actual percentiles in each of the combinations of domain and
difficulty. For those in the lowest quartile, estimated percentiles
were significantly higher than actual percentiles in most cases.

Our prediction was that when mean percentile estimates were
near 50, there would be no difference in miscalibration between
lowest and highest performers. As mean percentile dropped below
50, lowest performers would show better calibration than highest
performers. The results bear this out, as shown in Table 1. There
were three sets of questions with mean percentile estimates greater
than 40 (averaged across the lowest and highest performers): easier
colleges, harder colleges, and easier pop songs. In these three
tasks, lowest and highest performers did not differ significantly in
miscalibration (s < 1.04, ps > .32, ds < .25). In one other task
(harder pop), mean percentile estimates were between 30 and 40.
Lowest performers were marginally better calibrated than highest
performers, #20) = —2.00, p = .06, d = —.82. The two domains
with a mean percentile estimate less than 30, easier and harder
Nobels, showed lowest performers being significantly better cali-
brated than highest performers, #20) = —3.11, p = .006, d =
—1.30 and #(13) = —5.00, p < .001, d = —2.48, respectively.

Table 1
Perceived Percentiles, Actual Percentiles, and Miscalibration for Each Trivia Quiz in Study 2, by Quartile of Performance on that Quiz
Quartile
Lowest Highest
Overall
Subdomain and measure M M (SD) t df M (SD) t df

Easier college acceptance rates

Perceived percentile 43.07 41.89 (26.21) 44.83 (30.28)

Actual percentile 10.89 (5.61) 91.17 (4.65)

Miscalibration 31.00 3.62%%* 8 46.33 3.63% 5
Harder college acceptance rates

Perceived percentile 42.09 49.22 (29.28) 37.15 (25.77)

Actual percentile 10.89 (5.02) 83.19 (8.44)

Miscalibration 38.33 3.61%* 8 46.04 6.04%* 12
Easier pop songs on charts

Perceived percentile 42.00 30.85 (23.59) 60.13 (27.95)

Actual percentile 15.85 (8.45) 83.88 (8.10)

Miscalibration 15.00 2.23% 12 23.75 2.90% 7
Harder pop songs on charts

Perceived percentile 38.18 28.00 (24.07) 46.67 (24.21)

Actual percentile 12.50 (7.15) 82.83 (7.93)

Miscalibration 15.50 2.19 9 36.17 4.93%* 11
Easier year of Nobel Prize

Perceived percentile 29.14 19.78 (20.71) 35.62 (27.63)

Actual percentile 11.26 (6.59) 80.67 (6.31)

Miscalibration 8.52 1.07 8 45.06 5.59%* 12
Harder year of Nobel Prize

Perceived percentile 28.53 24.00 (15.17) 35.33 (18.62)

Actual percentile 12.00 (3.75) 92.00 (3.87)

Miscalibration 12.00 2.59% 8 56.67 6.63%* 5

Note. Overall M is the average perceived percentile across lowest and highest quartiles combined. Miscalibration = perceived percentile minus actual
percentile for the lowest quartile and actual percentile minus perceived percentile for the highest quartile. The # test is a paired ¢ test on actual versus
perceived percentile testing whether miscalibration is significantly different from 0. Tests of the miscalibration measure between lowest and highest

quartiles are reported in the text.
*p <.05. *p <0l
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Figure 5. (Top) Participants’ estimates of performance percentile by
quartile of actual performance by domain in Study 2. (Bottom) Partici-
pants’ estimates of performance percentile by quartile of actual perfor-
mance on easier and harder tests in Study 2. College refers to college
acceptance rates; pop refers to popular songs; Nobels refers to Nobel Prizes
in Literature.

Next, we examined participants’ sensitivity to relative standing
by looking at the correlation between actual and estimated percen-
tile. In the overall sample, percentile estimates were not signifi-
cantly related to actual percentiles in either condition of colleges
or Nobel Prizes (Beugier coticges = 183, Bharder cotieges = —-181,
Beasier Nobets = 150, Brarder Nobets = 145, ns), but were signifi-
cantly related to actual percentiles in both conditions of pop songs
(Beasier pop = 483, p = .002 and B,,rqer pop = 389, p = .013). We
then regressed estimated percentile on actual percentile separately
for top-half performers and bottom-half performers. There were no
significant differences between bottom-half and top-half perform-
ers. The direction of the differences was not consistent across
domains and conditions, although the two strongest positive coef-
ficients did occur among the top-half performers. For easier col-
leges, Byorom = -193 versus By, = —.237, F(1,36) = 1.79, p =
.189; for harder colleges, Byoyom = —-267 versus B, = —.090,
F(1,37) = 0.31, p = .583. For easier pop, Byowom = —-048 versus
Blop = 438, F(1, 37) = 2.49, p = .123; for the harder version,
Bootom = -139 versus B, = .008, F(1,37) = .16, p = .688. For

easier Nobel Prizes, Byouom = -267 versus B, = .013, F(1, 36) =
0.60, p = .442; on the harder version, By qom = —-129 versus
Bwop = 391, F(1, 37) = 2.56, p = .118.

Discussion

The results of this study are consistent with Krueger and Muel-
ler’s (2002) hypothesis that skilled and unskilled people are sim-
ilarly unaware of how they perform relative to others. The relative
degree of miscalibration between low and high performers was
driven by the task difficulty: With domains that feel harder (e.g.,
Nobel Prizes) and with more exacting criteria, low performers
were better-calibrated than high performers, producing an
unskilled—aware pattern. As with the apparent advantage of skilled
performers in easy domains, the apparent accuracy of the unskilled
in hard domains also is an accident of task difficulty, not an
indication of greater awareness. Tests of sensitivity to relative
standing found no consistent pattern of differences between top-
half and bottom-half performers in this study. In Study 2, as in
Study 1, we found only a weak positive relation between objective
and subjective measures of relative performance. A potential con-
cern is that these might be tasks for which relative performance is
for some reason inherently unpredictable. If so, we might not have
provided the high performers with adequate opportunities to dem-
onstrate their superior metacognitive abilities. Kruger and Dunning
(2002) made a similar point in their critique of Krueger and
Mueller’s (2002) studies, suggesting that tasks with low reliability
have a large random component and are thus unpredictable. (We
will elaborate on the difference between reliability and predict-
ability in the General Discussion.)

Reliability in the 12 subdomains of the present study ranged
from poor to moderate (Spearman—Brown split-half reliabilities
ranged from —.24 on one set of easier pop music estimates to .52
on one set of harder Nobel Prize estimates). We note that the
apparent unskilled—aware pattern held within the latter, most re-
liable subdomain, #7) = —3.73, p = .008, where the lowest
quartile showed better calibration (M, = 14.00) than did the
highest quartile (M};;gpesc = 65.33). However, one might wish to
have more evidence about the relation between skill level and
estimates of percentile in more reliable, predictable tasks.

Study 3

In this study, we used a task that is more amenable to prediction
of one’s percentile than were our previous tasks. In line with
Kruger and Dunning’s (2002) focus, the selected task is highly
reliable; it also has other features that may help participants to
some degree in judging their percentile. The task we chose was a
“word prospector” game. In this game, the player attempts to
construct as many four-, five-, and six-letter words as possible
from the letters contained in one 10-letter word. For example, from
the word typewriter one can construct type, writer, trite, pewter,
and so forth. Participants receive some performance feedback in
that they can score their own word lists as they produce them.
However, as in previous studies, the participants do not receive
reliable, objective feedback during the task. Those with poor
spelling or weaker vocabularies might mistakenly believe that they
will get credit for, say, weery or twip. The other component of
percentile is of course the performance of others. Here, too, par-



68 BURSON, LARRICK, AND KLAYMAN

ticipants may have some information to go on, but it is limited.
They may have a general sense of where they stand on games and
tasks involving spelling and vocabulary (such as SAT Verbal
percentiles), but lacking specific feedback on other people’s per-
formance, they cannot know where a (self-calculated) score of say,
37, would put them in the distribution.

In this study we gave participants two different word-prospector
problems of similar difficulty and asked them for estimates about
their percentiles on each word individually and overall. This fa-
cilitated two approaches for comparing predicted to actual perfor-
mance at different levels of ability. The first approach was to
separate participants according to their total performance on both
subtasks. Because the word-prospector task has good reliability,
this gives us a stable measure of each participant’s ability.

The second approach (from Klayman et al., 1999; see also
Krueger & Mueller, 2002) was to separate participants according
to their performance on one subtask, and measure their miscali-
bration on the other subtask. In other words, one task was used
only to classify participants as having high or low task skills,
ignoring their subjective estimates of performance for that task.
Next, we took the difference between the actual and estimated
performance on the other task to obtain our measure of accuracy.
This second sample provides a noisy measure of true ability, which
makes the resulting estimate of miscalibration conservative, but it
eliminates the bias introduced when perceived and actual perfor-
mance are measured within the same sample. As an illustration of
the same-sample bias, consider that those found in the lowest
quartile or the highest quartile on a given test fall in these segments
of the distribution partly because of ability and partly because of
bad and good luck in that sample, respectively. Even in tasks that
are largely skill based, judges cannot perceive all the elements of
good and bad luck that contributed to their high or low perfor-
mance in a given sample. Thus, their estimates of their perfor-
mance will justifiably be regressive, but this will be counted as
miscalibration when compared with their actual performance. Con-
sequently, those with very low actual percentiles will appear to
greatly overestimate their perceived percentile and those with very
high actual percentiles will appear to greatly underestimate their
perceived percentile. In the split-sample method, the worst and
best performers will still do poorly and well, respectively, on the
other test, but now good and bad luck will be equally distributed
among them, on average. Thus, judging actual percentile on one
subtask and measuring miscalibration (estimated vs. actual percen-
tile) on another subtask provides a luck-neutral way of comparing
the estimates of good and poor performers. (For a more detailed
explanation of how this method removes the biasing effects of
regression to the mean, see Klayman et al., 1999.)

Method

Participants. Seventy-six University of Chicago students were re-
cruited with advertisements posted around campus and were paid 5 dollars
for their participation, which required approximately 15 min.

Design. Task difficulty was manipulated between participants. Those
in the harder condition were given two words that prior testing had shown
to be relatively difficult to work with (petroglyph and gargantuan) and
were given 3 min to work on each. Those in the easier condition received
two easier words (typewriter and overthrown) and were given 5 min for
each. The order of words was not varied: All participants received them in
the order shown.

Procedure. At the beginning of the procedure, participants received
one page of written instructions including an explanation of the word-
prospector task, an example, and the scoring rules for the task. These rules
were also repeated at the top of the page containing the 10-letter word.
Participants received points for each letter of each correct word they
spelled and lost points for each letter of nonexistent, repeated, or mis-
spelled words. For example, if a participant looking at the word gargan-
tuan spelled the word grant, 5 points would be counted toward the overall
score. However, if the participant spelled the nonexistent word naut, 4
points would be subtracted from the overall score.

After reading the page of instructions, the experimenter repeated the
instructions and the rules for scoring. Next, participants were allowed to
turn the page and begin creating words from the first 10-letter word. After
working on the first 10-letter word for 3 or 5 min, participants were stopped
and asked to fill out the following page where they estimated the number
of points that they expected to receive, the percentile rank into which they
would fall in relation to their peers, and the difficulty of the task for
themselves and for the average participant, using a scale ranging from 1
(very easy) to 10 (very difficult). As in Studies 1 and 2, the use of a
percentile scale was described in detail. Participants were then given a
5-min, unrelated questionnaire. Next, they were given 3 min (harder
condition) or 5 min (easier condition) to repeat the task using a different
10-letter word. Lastly, after the experimenter stopped them, the participants
were given another one-page questionnaire with the same questions as after
the first 10-letter word, plus a request for an estimate of their percentile
rank for word-prospector tasks in general (“how good are you at finding 4-,
5-, and 6-letter words in 10-letter words?”).

Results

The present design affords several variations in how to measure
performance and accuracy of estimates. One can examine overall
performances across the two tasks completed by each participant,
take separate measures for each task, or take the average of the two
tasks measured separately. We found no theoretically important
differences among the three variations. We report the results from
the first, that is, from measures and estimates of overall perfor-
mance across each participant’s two word-prospector problems.

Manipulation checks. First, we checked the reliability of the
task by comparing the first half with the second half. The split-half
reliability was very high for both the easier and harder versions
(.74 and .78, respectively). Next, we checked the difficulty ma-
nipulation using MANOVAs, with difficulty as a between-
participants variable and first versus second word as repeated
measures. Scores were lower in the harder condition than in the
easier condition, F(1, 74) = 95.49, p < .001, n2 = .56, and ratings
of difficulty were significantly higher, F(1, 74) = 24.78, p < .001,
n* = .25 (see Table 2). There was also an interaction between
difficulty and word for score, F(1, 74) = 15.21, p < .001, n2 =
.17, and for reported difficulty, F(1, 74) = 4.98, p = .05, n2 = .05,
suggesting that the word petroglyph was, and seemed, more dif-
ficult than the word gargantuan and that the word typewriter was
more difficult and seemed slightly more difficult than overthrown.

Percentile estimates. Next, we looked at percentile estimates
using a MANOVA with difficulty level and performance quartile
as between-participants variables. Participants were grouped into
performance quartiles according to their overall performance
across both 10-letter words. The dependent measures were the
estimate of overall percentile participants made after having com-
pleted both words and their actual overall performance percentile.

There was no significant overall difference between estimated
and actual percentiles (F < 1), but there was a significant main
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Table 2
Performance Scores and Ratings of Difficulty on Each Word
Prospector Problem in Study 3

Score Difficulty rating
Domain and word M (SD) M (SD)
Easier word prospector
Typewriter 57.31 (22.25) 5.92 (1.70)
Overthrown 64.64 (22.27) 5.67 (1.85)
Overall easier 60.97 (22.41) 5.79 (1.77)
Harder word prospector
Petroglyph 25.73 (19.50) 7.20 (1.67)
Gargantuan 17.15 (14.36) 7.68 (1.33)
Overall harder 21.44 (17.45) 7.44 (1.52)
Overall mean (all words) 45.32 (28.96) 6.46 (1.85)

effect of difficulty, F(1, 68) = 5.07, p = .028, o> = .07, and an
interaction between difficulty and estimated versus actual percen-
tile F(1, 68) = 6.88, p = .011, n2 = .09. These results reflect the
difficulty effect observed in the previous studies: Percentile esti-
mates averaged 54.39 in the easier condition and 43.50 in the
harder condition. (Average actual percentile was by definition the
same in the two conditions).

A main effect of quartile was inevitable, given that quartile was
determined by the same performance that determined actual per-
centiles. However, follow-up tests using regression showed that
there was also a positive linear relationship between estimated
percentiles and actual percentiles, B = .224, SE = .072, B = .343,
#(73) = 3.118, p = .003; participants in higher quartiles of per-
formance gave higher estimates of performance than did partici-
pants in lower quartiles (see Figure 6). There was also an interac-
tion between quartile and estimated versus actual percentile, F(3,
68) = 42.77, p < .001, n2 = .65. Those in the highest quartile
underestimated their percentile (M, qer estimate = ©07.33 VS.
Measicr actual — 87.00 and Mharder estimate 54.20 vs. Mh
87.00), whereas those in the lowest quartile overestimated theirs
(Meagier esimaie = 3222 V8. Meygier acruar = 12.00 and My, paer estimate =
35.00 vS. My vder acwar = 11.90). There was no three-way interac-
tion between quartile, difficulty, and estimated versus actual mea-
sures (Fs < 1). That is, there was no evidence to contradict the
hypothesis that the estimate lines for easier and harder tasks are
parallel.’

Asymmetry by quartiles. As in Studies 1 and 2, we calculated
miscalibration as estimated overall percentile minus actual overall
percentile for the lowest quartile and actual overall percentile
minus estimated overall percentile for the highest quartile. In the
easier condition where the average percentile estimate across the
lowest and highest quartiles was 59.78, miscalibration was signif-
icantly greater in the lowest quartile (M = 40.22) than in the
highest (M = 19.67), #(16) = 3.32, p = .004, d = 1.49. As
predicted, in the harder condition where the average percentile
estimate across the lowest and highest quartiles was 44.60, mis-
calibration was nonsignificantly less in the lowest quartile (M =
23.10) than in the highest (M = 32.80), #(18) = 1.20,p = .25, d =
S1.

We also looked at calibration on estimates of absolute perfor-
mance (i.e., points scored), rather than relative standing. In the
easier condition, there was no difference in miscalibration between

arder actual —

the lowest and highest quartiles (M}, e = 6.78 VS. Myiopeq =
12.11), #(16) = —0.24, p = .812. In the harder condition, the
lowest quartile was directionally more miscalibrated than the high-
est (Mowese = 31.90 vs. Myinese = 4.80), #(18) = 1.76, p = .095.
It is interesting to note that, consistent with Kruger and Dunning’s
(1999) metacognitive hypothesis, the poorest performers on the
hardest task seem to lack the skill to perceive how badly they are
doing. (They received about 5 points on average and thought they
were earning 37.) Nevertheless, these poor performers were not
worse than the top performers at estimating the percentile of their
performance.

We next examined sensitivity to relative standing, measuring the
correlation between estimated and actual performance. In the sam-
ple as a whole, percentile estimates were significantly related to
actual percentiles for petroglyph, gargantuan, and overthrown
Brewogiypn = 474 p = 002, Byarganaan = 350, p = .029,
Boverthrown — 445, p = .007) and not significantly related for
typewriter (Bypewriter = 216, p = .205). When the same regres-
sions were performed separately for bottom- and top-half perform-
ers, the standardized coefficients for the top-half were not signif-
icantly stronger than the standardized coefficients for the bottom-
half performers on any of the four words. However, in every case,
sensitivity directionally favored the top-half performers. For the
easier words, Byouom = -270 versus B, = .395, F(1, 33) = 0.15,
p = 702, on fypewriter, and Byouom = -185 versus B, = .316,
F(1, 33) = 0.16, p = .695, on overthrown. For the harder words
(Boottom = 169 vs. B, = .607), F(1, 37) = 2.24, p = .143, on
petroglyph, and By,oom = —-227 vs. By, = .034, F(1, 37) = 0.66,
p = .423 on gargantuan.

We also examined sensitivity to absolute performance (points
scored). In the sample as a whole, score estimates were signifi-
cantly related to actual scores for all four words (Bpeogiypn = 603,
P < 005 Buargantwan = 373, p = .018; Bypewriter = 455, p =
.005; Boverthrown = 044, p < .001). On the easier words, the Chow
test showed that the standardized coefficient for the bottom-half
performers was marginally lower than that of the top-half perform-
ers on overthrown (Byouom = 110 vs. B, = .652), F(1, 33) =
3.19, p = .083, and not significantly different on typewriter
(Boottom = -245 vs. By, = 718), F(1, 33) = 2.62, p = .115. On
the harder words, the standardized coefficient for the bottom-half
performers were significantly lower than for top-half performers
(Bootom = —-111vs. B, = .739), F(1, 37) = 9.30, p = .004, on
petroglyph, and By,oyom = —-292 vs. By, = .555, F(1,37) = 8.49,
p = .006, on gargantuan.

Split-sample tests of accuracy. The previous studies in this
article and in Kruger and Dunning (1999) sorted participants on
actual percentile to create quartiles and then calculated miscali-
bration within each quartile. As we discussed earlier, effects of
regression toward the mean necessarily exaggerate the degree of

5 Though there is no chance-level of performance that we can use to
argue that this experiment meets a minimum threshold of ability, we
believe that it does in fact clear this hurdle. Participants’ average estimates
of raw score were fairly large, especially given that they could even be
negative numbers (Myypewriter = 38, Moverthrown = 05> Mpeqogiypn = 29, and

Mgy antuan = 21). Furthermore, participants’ performance on these words
were positive and high (M, =57,M =65,M, =26,

ypewriter overthrown petroglyph
and M,

gargantuan 17)
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Figure 6. Participants’ overall estimates of performance percentile by
quartile of overall actual performance on an easier and harder word
prospector task in Study 3.

miscalibration in the extreme quartiles. To avoid this problem, we
divided participants according to their quartile of performance on
one word and measured the difference between their estimated and
actual percentiles on the other word. We again calculated miscali-
bration as estimated percentile minus actual percentile for those in

Table 3

the lowest quartile and as actual percentile minus estimated per-
centile for those in the highest quartile.

The results revealed different patterns depending on which word
was conditioned on, but in a predictable way. Results for the
second word conditioned on the first are shown in the top half of
Table 3. Highest performers were marginally better calibrated
when the task was perceived as easier (i.e., average percentile
estimates across lowest and highest quartiles were slightly above
50; M, = 28.59 versus M, ey = 6.38), #(16) = 1.75, p =
099, d = .79. As expected given that the average percentile
estimates were slightly below 50, the first and fourth quartiles did
not differ significantly on the harder word (M, s = 11.98 vs.
Miighese = 26.10), #20) = 1.38, p = .184, d = .56. Next, we did
the reverse, dividing participants according to their quartile of
performance on the second word and measuring the difference
between estimated and actual performance on the first word.
Results are shown in the bottom half of Table 3. Because the
perceived percentile for both words (typewriter and petroglyph)
averaged to roughly 50 across the lowest and highest quartiles
(suggesting that it was moderately difficult just as in the moderate
trivia condition of Study 1), there were the expected nonsignificant
differences in miscalibration by quartile (s < .13, ps > .89).

The key result is that the overall magnitude of miscalibration
was substantially lower once quartiles were defined on a different
task (compare the means in Table 3 with the means reported in the
Asymmetry by quartile section). This reflects the removal of the
bias induced by regression to the mean. Of course, the total amount
of error across all participants on a given task is a constant.

lowest

Perceived Percentiles, Actual Percentiles, and Miscalibration for Each Word Prospector Problem in Study 3, by Quartile of

Performance on the Other Problem

Quartile
Lowest Highest
Overall
Word and measure M M (SD) t df M (SD) t df

Easier word: overthrown®

Perceived percentile 56.67 55.56 (19.11) 57.78 (25.01)

Actual percentile 26.97 (25.84) 64.16 (34.79)

Miscalibration 28.59 2.77* 8 6.38 0.87 8
Harder word: gargantuan®

Perceived percentile 43.77 37.83 (15.34) 50.90 (20.80)

Actual percentile 25.85 (23.96) 77.00 (22.30)

Miscalibration 11.98 1.59 11 26.10 3.94#% 9
Easier word: typewriter®

Perceived percentile 52.88 40.56 (17.04) 66.75 (18.62)

Actual percentile 30.98 (33.06) 74.85 (24.28)

Miscalibration 9.57 0.67 8 8.10 0.83 7
Harder word: petroglyph®

Perceived percentile 50.74 44.11 (14.37) 56.70 (28.98)

Actual percentile 29.78 (27.86) 72.50 (28.98)

Miscalibration 14.33 1.63 8 15.80 2.17% 9

Note. Overall M is the average perceived percentile across lowest and highest quartiles combined. Miscalibration = perceived percentile minus actual
percentile for the lowest quartile and actual percentile minus received percentile for the highest quartile. The 7 test is a paired ¢ test on actual versus perceived
percentile, testing whether the miscalibration is significantly different from 0. Tests of the miscalibration measure between lowest and highest quartile are

reported in the text.

 Quartile determined by the first word presented, perceived and actual performance percentile determined by the second. " Quartile determined by the
second word presented, perceived and actual performance percentile determined by the first.

$p<.10. *p<.05 *tp< .0l
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However, removing the effects of regression toward the mean
makes those at the extremes of performance look much less
extreme in their errors of self-assessment.

Discussion

It is clear that the word-prospector task allows participants to
estimate how well they have done compared with others to a
moderate degree. On these tasks, better performers do show
greater sensitivity to where they stand relative to others. However,
as in our previous studies, this does not mean that they are better
calibrated. Rather, we find once again that who is miscalibrated is
mostly a function of the overall bias in judgments across people.
For good and bad performers alike, overall bias varies according to
task difficulty such that in easier tasks the unskilled seem unaware
of their percentile; in harder tasks, the skilled seem unaware.

General Discussion

People have a difficult time judging how their performance
compares to the average performance of their peers. Judgments of
relative standing are noisy. Accordingly, estimates of percentile
are rather regressive: The best performers do not guess how well
they have done; the poorest performers do not guess how badly
they have done. At the same time, as Kruger (1999) found, there
is a systematic effect of task difficulty. Judgments of relative
standing are biased. People give lower estimates of their percentile
when they find the task more difficult. The well-known above-
average effect turns out to be only half the picture. On difficult
tasks, the average person thinks he or she is performing below
average.

In our studies, we replicated, eliminated, or reversed the asso-
ciation between task performance and judgment accuracy reported
by Kruger and Dunning (1999) depending on task difficulty. On
easy tasks, where there is a positive bias, the best performers are
also the most accurate in estimating their standing, but on difficult
tasks, where there is a negative bias, the worst performers are the
most accurate. This pattern is consistent with a combination of
noisy estimates and overall bias, with no need to invoke differ-
ences in metacognitive abilities. In this regard, our findings sup-
port Krueger and Mueller’s (2002) reinterpretation of Kruger and
Dunning’s (1999) findings. An association between task-related
skills and metacognitive insight may indeed exist, and later we
offer some additional tests using the current data. However, our
analyses indicate that the primary drivers of miscalibration in
judging percentile are general inaccuracy due to noise and overall
biases that arise from task difficulty. Thus, it is important to know
more about sources of each class of error in order to better
understand and ameliorate them.

Sources of Noise

The results of our three studies indicate that there is often a
weak positive relation between objective and subjective measures
of percentile. This suggests that people have limited insight into
their skills and performance. We believe that it is important for
future research to examine the sources of insight and the sources of
error that produce this weak relationship and the conditions that
facilitate or hinder judgment. Two variables that we think are

worthy of further study in this regard are task randomness and
diagnosticity of feedback.

Task randomness. Using a broad definition, randomness can
be thought of as any source of variability that is unpredictable for
a judge. Thus, people attempting to predict or estimate their
performance relative to others must deal with different kinds of
randomness that have different effects on the accuracy of their
judgment. We discussed one source of error in connection with
Study 3. Performance on any given task is subject to random
variation, holding ability constant. In a testing situation, this kind
of randomness stems from luck as to which particular test items are
included, transient effects on performance such as distraction or
fatigue, and so forth. Judges can be expected to have only incom-
plete awareness of such effects. Thus, estimates of performance
will inevitably be regressive when conditioned on actual perfor-
mance. In Study 3, we eliminated these effects by using one
sample of performance to segregate low and high performers and
then used an independent sample of performance to measure
perceived and actual percentile. This reduces the degree to which
the extreme quartiles appear biased although there is still substan-
tial error in estimates of percentile across performance levels. This
indicates that even the stable components of relative performance
are hard for people to predict. The less predictable one’s perfor-
mance, the less performers can be expected to guess what their
percentile will be. In terms of a graph such as that portrayed in
Figure 1, the less predictability, the flatter the lines relating pre-
dicted to actual performance.® In future work, it will be useful to
investigate the task and person characteristics that affect predict-
ability and how different aspects of predictability affect judgments
of percentile.

Diagnosticity of feedback. People’s ability to estimate their
percentile is also determined by the kind of feedback they receive
and how they use it. Most of the tasks used by Kruger and Dunning
(1999), Krueger and Mueller (2002), and us provided participants
with little specific information about how they were doing in an
absolute sense, or about how their peers performed. For example,

¢ Kruger and Dunning (1999, 2002) emphasize the role of task reliability
in producing these regression effects, but it is more precisely predictability
that matters. Reliability is often associated with predictability, but it is
neither necessary nor sufficient. Imagine the task of tossing coins into a
box while blindfolded. After flipping 10 coins, tossers are asked to estimate
how the proportion of heads-up coins in the box will compare to the
average coin tosser’s. Those with the most heads and those with the fewest
should of course give very similar, arbitrary guesses, and both will appear
quite inaccurate. That task is both unreliable and unpredictable. However,
if we repeat the task with the blindfold removed, the tossers can easily
count the number of heads. The task is still unreliable, but relative standing
is now very predictable. Similarly, a first-year college student may face
final exams in five required courses. As tests of academic performance,
reliability may be poor—the student’s position in physics may be poorly
correlated with his or her position in English and so forth. Nevertheless, by
the end of the semester, the student may have a good idea about where he
or she is likely to fall on each of the tests.

If the coin tossers’ blindfolds are put back on but different, biased coins
are given to each tosser, the following situation is likely to occur: Multiple
rounds with the same coins might now be quite reliable with regard to
relative standing but will be unpredictable for the tossers. Similarly, one
may have no idea of one’s relative performance on, say, emergency driving
maneuvers, no matter how reliably they can be tested.
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participants were not told whether their quiz answers were correct
and were not told what the average score was. Though many tasks
in life have this quality, there are also many that do provide
considerable performance feedback, such as sports and academics.
For instance, a baseball player quickly knows the outcome of each
turn at bat and has access to the performance of other players and
other teams. Students get direct feedback about their relative
standing every time they are graded on a curve. Ultimately, general
theories about accuracy in judging relative performance will need
to take into account differences in specific feedback conditions.
The original unskilled—unaware hypothesis of Kruger and Dun-
ning (1999) pertained to environments offering impoverished feed-
back on both absolute and relative performance for both self and
others. General claims about accuracy will hinge on discovering
more about how, and how well, people use different kinds of
feedback about performance.

Sources of Bias

Judgments of percentile are not only noisy because of random
error and poor feedback but are also prone to systematic bias:
People feel they are worse than average on tasks on which every-
one performs poorly and above average on tasks on which every-
one performs well (confirming the finding of Kruger, 1999).
Kruger provides evidence that judges anchor on their own absolute
performance and adjust insufficiently for the knowledge they have
of other people when they estimate their own percentile (see also
Chambers & Windschitl, 2004, and Moore & Kim, 2003). Other
unexplored factors are likely to bias percentile estimates, and we
briefly sketch some possibilities.

First, there may be additional factors that affect perceived per-
centile by influencing the perceived difficulty of a task. For ex-
ample, people use subjective feelings of cognitive effort as a cue
to performance (Schwarz et al., 1991). We speculate that tasks for
which it is easy to produce a response (e.g., a multiple-choice
recognition test) are likely to lead to upwardly biased estimates of
relative performance compared to tasks for which producing a
response is difficult (e.g., uncued recall). However, we would also
note that the association between perceived difficulty and esti-
mated percentile may not be a “bias” at all. Instead, it may
represent the fact that, in the natural ecology, absolute perfor-
mance and percentile are often correlated. If you have poor infor-
mation about how others perform, it might in fact be the best
strategy to guess that you are worse than average when you do
poorly and better than average when you do well (Burson &
Klayman, 2005). When experimenters deliberately select tasks that
are hard or easy for everyone, the participants naturally seem to
overestimate the extent to which their success or failure is indi-
vidual rather than universal.

Second, factors other than perceived task difficulty are likely to
contribute to systematic bias in percentile estimates. One possibil-
ity is that people are unclear about differences among different
subpopulations to which they are being compared. College stu-
dents at top schools, for instance, often experience a shock in
moving from their high school environment in which they were
nearly all in the upper percentiles of school performance to one in
which they are, on average, only average. Indeed, the above-
average effect found in many psychology studies may stem in part
from college students’ inability to fully adjust for this effect. This

systematic bias will help create a seemingly unskilled—unaware
pattern in many studies involving talented undergraduates. Failure
to adjust for the reference group could also produce the opposite
effect. If historically poor performers on a task are systematically
grouped together and asked to assess their relative performance
within that untalented group, the skilled—unaware pattern we ob-
served in our studies could be produced. (Accordingly, in our
studies, we manipulated task difficulty by varying characteristics
of the task, not by selecting more or less talented subpopulations.)

Finally, motivation may also play an important role in system-
atic misestimation of abilities, typically yielding an upward bias in
percentile estimates. Self-enhancement is undoubtedly a major
contributor to overestimation. When judges have a nearly costless
opportunity to maintain some optimal level of optimism, most will
undoubtedly take it and give higher estimates of performance than
are warranted (Baumeister, 1989). On the other hand, many studies
have shown that self-enhancement is less likely when people are
confronted with reality constraints (Kunda, 1990) such as when
performance feedback is expected to be diagnostic (Dunning,
Meyerowitz, & Holzberg, 1989; Larrick, 1993) or temporally near
(Gilovich, Kerr, & Medvec, 1993; Shepperd, Ouellette, & Fernan-
dez, 1996). In other words, it is difficult to hold inflated images of
oneself when that inflated image is about to be confronted with the
truth. The defensive pessimism and self-handicapping literatures
also suggest that some performers may strategically report or even
manufacture deflated views of themselves on a task as they strive
to protect general feelings of competence in a domain (Berglas &
Jones, 1978; Hirt, Deppe, & Gordon, 1991; McCrea & Hirt, 2001;
Norem & Cantor, 1986). Overall, self-enhancement contributes to
the bias of overestimation of performance in many domains
(Krueger & Mueller, 2002), and constraints on self-enhancement
may reduce the bias. Even if errors in percentile estimates are only
due to a noise-plus-bias process, as we (and Krueger & Mueller,
2002) have proposed, there are many interesting psychological
sources of bias to incorporate into such a model.

Sensitivity Measures for the Unskilled—Unaware
Hypothesis

Kruger and Dunning (1999, 2002) argued that those who are less
skilled at a task are also less able to judge their relative perfor-
mance, as measured by perceived percentile. This argument is
based on two hypotheses: (a) There is a performance—
metacognition association such that those who perform worse at a
task are less able to assess their own performances and those of
others, and (b) because of this, the bulk of the error in judging
relative performance is produced by poor performers. Although we
disagree with the latter interpretation, we do not reject the former.

Miscalibration, we argue, is a poor measure of accuracy because
one of its two terms—perceived percentile—is subject to task-
induced bias (Kruger, 1999), making it inappropriate to compare
directly to actual percentile (Krueger & Mueller, 2002). We used
a different measure to test for metacognitive differences that is less
vulnerable to task-induced bias. We tested sensitivity by regressing
perceived percentile on actual percentile among bottom-half per-
formers and top-half performers. Results were mixed across stud-
ies and conditions, but the results generally favored top-half per-
formers more than bottom-half performers. In this section, we
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provide a small-scale meta-analysis of sensitivity, aggregating data
from all of our experimental tasks.

Our studies included 12 tasks altogether (2 quizzes from Study
1, 6 subsets of easy and hard trivia from Study 2, and 4 words from
Study 3). In each study, we regressed estimated percentile on
actual percentile separately for bottom-half and top-half perform-
ers and obtained the standardized coefficients. We transformed
those 24 coefficients using Fisher’s r-to-z and then compared
top-half and bottom-half performers by a paired samples ¢ test with
tasks as cases.” The average standardized coefficient was .23 for
top-half performers and .03 for bottom-half performers, #11) =
2.13, p = .06, suggesting that the top-half performers had better
insight into their relative standing. This pattern also held for the
relationship between estimated and actual absolute scores in the
studies that included those measures (Studies 1 and 3). The aver-
age coefficient between estimated and actual score was .45 for
top-half performers and .05 for bottom-half performers, #(5) =
2.19, p = .08.

To look at these relationships using a more powerful test, we
standardized perceived and actual percentile within each task and
then aggregated all of the data into one large data set. This
provides an analysis at the level of the individual rather than the
task. In an analysis parallel to those conducted in the individual
studies, we regressed perceived percentile on actual percentile
among bottom-half performers and among top half performers. A
Chow test confirmed at a marginal level of significance that
bottom-half performers were less sensitive to their actual percen-
tile (Byouwom = -031) than were top-half performers (B,,, = .206),
F(1, 473) = 3.67, p = .056. Because participants contributed
several data points each in Studies 2 and 3, however, this test may
overstate the appropriate degrees of freedom. We reduced the
degrees of freedom to match the number of total participants (N =
206), and the difference in coefficients was still marginally sig-
nificant, F(1, 205) = 3.67, p = .057.

We offer one final test of differences in sensitivity. When the
data from all studies are pooled, and unstandardized perceived
percentiles are regressed on actual percentiles, there is a significant
positive relationship, B = .188, SE = .037, B = .226, 1((474) =
5.04, p < .001, constant = 34.85, R*> = 05.1f top-half performers
are more sensitive than bottom-half performers, there should also
be a significant quadratic component. Indeed, regressing perceived
percentile onto actual percentile and actual percentile squared
showed a significantly better fit, R* change = .010, F(1, 473) =
5.01, p = .026. The resulting regression equation is graphed in the
solid line of Figure 7. In this model (constant = 40.23), actual
percentile was no longer a significant predictor of estimated per-
centile (B = —.138, SE = .151, B = —.165), #(473) = —918,p =
.359, but actual-percentile-squared was significant (B = .003,
SE = .001, B = .404), 1(473) = 2.238, p = .026). (This pattern
held when dummy variables were added for task and for level of
difficulty.)

Both this regression model and the earlier test of correlation
asymmetries between top- and bottom-half performers are subject
to a potential concern. As mean percentile estimates drop below
50, the correlation among the bottom-half performers may be
depressed because of a floor effect that restricts the range of the
dependent variable (percentile estimates cannot go below zero).
The correlation among the top-half performers would not be sim-
ilarly restricted, creating an artificial asymmetry.® This is an im-

portant concern that should be addressed in future research. How-
ever, we find in our studies that the asymmetry held in many
instances when mean perceived percentile was at 50 or above. It is
interesting to note that an opposite problem could arise on easy
tasks: As mean perceived percentile rose above 50, ceiling effects
would reduce the correlation among top-half performers and arti-
ficially create an asymmetry in favor of bottom-half performers.
Kruger and Dunning’s (1999) original data provided a test of this,
because mean percentile estimates were well above 50. Neverthe-
less, the means shown in Figure 1 also suggest greater sensitivity
among top-half performers. In fact, if perceived percentile is
regressed on actual percentile and actual percentile squared using
the 16 data points in Figure 1, the resulting model (shown as the
dotted line in Figure 7) is almost identical to ours except, as
expected, with a substantially higher constant.

Figure 7 provides a simple graphical summary of our main
findings. It shows that above-average performers have better sen-
sitivity to their relative standing than do below-average performers
(cf. Figure 3). However, the metacognitive advantage suggested by
greater sensitivity does not imply better calibration. The solid line
in Figure 7 shows that in our tasks, in which feedback is ambig-
uous and the net task-induced bias is negative, it is the judgments
of the better performers that deviate more from the truth. On
average, participants in the 85th percentile underestimated their
actual percentile by 35 percentile points; participants in the 15th
percentile overestimated their actual percentile by only 25 percen-
tile points. Ultimately, who deviates more from the truth is more a
function of task-induced bias than of metacognitive advantage.

Debates on Accuracy in Other Literatures

Similar debates about the accuracy of perceptions have occurred
in other literatures. We noted in the introduction that a debate in
the depressive realism literature ended in the conclusion that
“neither depressed nor nondepressed subjects displayed differen-
tial accuracy in terms of being able to vary their judgments to
achieve accuracy across changing situations” (Dykman et al.,
1989, p. 442). Instead, who appeared more accurate was an acci-
dent of the match between a dispositional bias (chronic perceptions
of low or high control) and the degree of control actually available
in a given task. In our studies, accuracy was driven by stable
task-related biases rather than by individual differences in bias.
Both cases share, however, the caveat that straightforward com-
parisons between perceptions and observed outcomes can be mis-
leading with regard to apparent cognitive differences between
“accurate” and “inaccurate” performers.

It is interesting also to compare our findings to those from
research on overconfidence, which compares subjective confi-

7 Strictly speaking, these tasks should not all be regarded as independent
cases given that the six tasks of Study 2 were presented within participants.
However, we checked the extent to which different sets of estimates
provided independent tests of relative ability. Recall that each participant
received six sets of questions, one in each combination of domain and
difficulty. We compared participants’ quartiles on each set of questions in
the study to their quartiles on each of their other sets. The sets proved to
be largely independent in terms of relative performance. Correlations
between pairs of sets ranged from —.39 to .31, with a median of .02.

¥ We thank Joachim Krueger for raising this concern.
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Figure 7. Plot of regression equation predicting perceived percentile from actual percentile, with data from
Studies 1-3 (solid line) and Kruger and Dunning’s (1999) means (dashed line).

dence estimates with absolute performance (e.g., the probability of
answers being correct). There are some clear parallels. In both
cases, the correlation between actual and predicted performance is
only weakly positive, and in both the effects of noise in judgments
can look like systematic biases. Consider the “hard—easy effect” in
overconfidence. When questions are sorted according to how fre-
quently they are answered correctly and then compared directly to
noisy subjective estimates of confidence, a systematic pattern is
observed: Questions that are rarely answered correctly show over-
confidence, but those that are frequently answered correctly show
underconfidence. Initially, psychological explanations were of-
fered for this pattern. Eventually, however, it was argued that
given the weak relationship between confidence and accuracy,
regression effects are sufficient to produce this pattern (Erev,
Wallsten, & Budescu, 1994; Juslin, 1993; Juslin, Winman, &
Olsson, 2000). This argument directly parallels the one we have
offered here, but with a different unit of analysis. With the hard—
easy effect in overconfidence, the unit of analysis is a question; in
tests of the unskilled—unaware hypothesis, the unit of analysis is a
person. When people are sorted according to an objective measure
of relative performance and then compared directly to noisy sub-
jective estimates, a systematic pattern is observed: Poor perfor-
mance on the objective measure is associated with overestimation
(e.g., the “unskilled” will overestimate their percentile) and supe-
rior performance will be associated with underestimation (the
“skilled” will underestimate their percentile). The implication in
both literatures is that the effects of noise in judgment must be
carefully accounted for before drawing conclusions about system-
atic cognitive biases. (See also our earlier discussion of the reasons
for task-induced biases.)

There is another interesting connection between the current
work and the overconfidence literature. Researchers often casually
speak of overconfidence and above-average effects as demonstrat-
ing similar optimistic biases. In this view, it might be surprising
that hard—easy effects in overconfidence seem to produce a dif-

ferent pattern of results than difficulty-induced biases in percentile
estimates. For example, hard tasks produce overconfidence but
worse-than-average perceptions. This seeming paradox is recon-
ciled when it is recognized that performance on hard tasks, by
definition, is quite poor such that even low average confidence will
often exceed average performance levels. However, low perceived
percentiles on hard tasks must fall short of true percentiles (which
necessarily average to 50). Larrick, Burson, and Soll (2005) and
Moore and Small (2005) have demonstrated that increases in task
difficulty do in fact increase overconfidence while simultaneously
reducing better-than-average effects.

Alternative Explanations for the Skilled—Unaware Pattern

We have proposed that a noise-plus-bias model explains both
the unskilled—unaware pattern of miscalibration on easy tasks and
the skilled—unaware pattern of miscalibration on hard tasks. Yet,
might there be other reasons that the unskilled—unaware pattern
reverses as tasks are perceived to be more difficult? Kruger and
Dunning (1999) proposed that the unskilled—unaware pattern
would only hold when a task permits the perception of a minimum
threshold of competence, noting that on very difficult tasks, people
would recognize their lack of ability and provide low percentile
estimates. This explanation can account for the lower estimates
and improved calibration of the worst performers on difficult tasks.
However, it does not address why the best performers would
dramatically underestimate their percentile on difficult tasks and
thereby exhibit greater miscalibration. Other mechanisms must be
added to the metacognition account to explain the pessimism of the
best performers on difficult tasks. We extend Kruger and Dun-
ning’s original proposal by sketching some conjectures along these
lines.

Suppose that on easy tasks, there is the expected metacognitive
difference. The worst performers do poorly but do not know it and
overestimate their standing. The best performers do well, know it
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(almost), and only slightly underestimate their standing. Suppose,
however, that on difficult tasks, a different process applies. One
possibility is that the best performers have succeeded purely by
good luck on hidden variables (such as good luck with guesses).
They naturally will not know they have been lucky, and thus the
best (luckiest) performers will underestimate their achievement.
However, this explanation applies only to tasks in which luck
alone determines who does well and who does poorly and in which
the nature of that luck is opaque to participants. For tasks in which
there are real skill differences, additional mechanisms must be
postulated to explain why highly skilled judges would underrate
themselves.

One possibility is that the best performers expect that their
relatively good performance may not be repeatable and therefore
give lower percentile estimates to match what they think they
might achieve over several trials. Perhaps the best performers fear
that their future performance will be worse and strategically give
conservative percentile estimates for their current high perfor-
mance in order to reduce future expectations (as a form of self-
handicapping; McCrea & Hirt, 2001) or to motivate harder work in
the future (Norem & Chang, 2002). In addition, high performers
may learn through social interaction that it is generally best to be
modest about their superior performance on difficult tasks (Tice,
Butler, Muraven, & Stillwell, 1995).

Each of these additional mechanisms is intriguing, and it would
be interesting to test whether they contribute to the miscalibration
of the best performers on difficult tasks. We believe that, in the
absence of direct evidence for additional mechanisms, a noise-
plus-bias model is a more parsimonious account of the current
results. In this model, one simple psychological mechanism—task-
induced bias (Kruger, 1999)—is sufficient to explain both the
underestimation of the best performers on difficult tasks and the
overestimation of the worst performers on easy tasks.

Conclusions

It is a well-established and entertaining fact that, on average,
people think they are above average (e.g., Svenson, 1981). How-
ever, recent research tells a more interesting story about who is
wrong, in which direction, and when. Kruger and Dunning (1999,
2002) suggested that there is a relationship between task perfor-
mance, metacognition, and judgmental accuracy. They proposed
that the bulk of miscalibration in judging relative performance
comes from poor performers’ tendency to overestimate their abil-
ities, which, in turn, is due to their poorer metacognitive skills. In
fact, these researchers have found that poor performers substan-
tially overestimate their percentile and better performers only
slightly underestimate theirs. Our studies show, however, that poor
performers are more miscalibrated than good performers only on
tasks that feel easy and that the reverse pattern occurs on tasks that
feel difficult.

These results indicate that the answer to the question, “Who
makes errors in judging relative performance?” is, more or less,
“Everyone.” On the kinds of tasks that have been studied to date,
the skilled and the unskilled are similarly limited in judging how
their performance compares with that of others. The answer to the
question, “In which direction do the miscalibrations occur?” de-
pends on task difficulty, as Kruger (1999) has also shown. In tasks
that seem easy, on average people think they are above average; on

tasks that seem difficult, people generally think they are below
average. This then leads to the answer to the question “When do
such miscalibrations occur?” Ultimately, who appears accurate is
an accident of the match between task-induced bias and actual
percentile. When the task seems hard, poor performers seem
perceptive, and the best performers underestimate their standing.
When the task seems easy, good performers seem perceptive, and
those near the bottom overestimate their standing. We propose that
a noise-plus-bias account is a parsimonious explanation for this
pattern of miscalibration (in line with Krueger & Mueller, 2002).

At the same time, other measures of accuracy do support the
existence of metacognitive differences related to level of task skill.
In our studies, though top performers were more miscalibrated
than were poor performers, they also tended to be more sensitive
to their relative standing than were poor performers. This illus-
trates our basic argument: We do not claim that there is no relation
between cognitive skill and metacognitive skill but rather that such
a relationship is not a primary determinant of who is miscalibrated.
Better performers may be more sensitive to differences in their
achievements, but there is still a significant degree of noise and
bias in translating that sensitivity into judgments of percentile.
Because sensitivity is less subject to task-induced bias, we propose
that it is a more appropriate measure for testing metacognitive
differences in the future.

Judgments of relative performance play an important role in
decisions about engaging in competitive activities, purchasing
goods and services, and undertaking challenging tasks (Burson,
2005; Moore & Kim, 2003; Simonsohn, 2003). Overestimates of
relative performance can lead to frustration, loss, and even phys-
ical harm. (Consider, for example, mediocre horseback riders or
skiers who attempt advanced trails.) On the other hand, there are
also significant domains in life where relative performance may be
underestimated and people fail to participate when they would
have succeeded (Camerer & Lovallo, 1999; Moore & Kim, 2003).
The research presented in this article provides a foundation for
further exploration of how and how well people know where they
are on the curve, and how people can be helped to assess their
place better.
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Appendix

Simulations of Judge Accuracy as a Function of Relative Ability
and Task Difficulty

We used simulations to verify the pattern of results that we would obtain
if tasks differed in overall bias (e.g., as a function of task difficulty), but the
ability to judge one’s relative position did not vary with one’s relative
ability. The results presented in Figure 2 were produced using these
simulations.

We produced a Monte Carlo simulation of 1,000 participants having a
range of different abilities at a task. The basic assumptions of our model are
that the participant’s performance score and his or her predicted perfor-
mance are both imperfect estimates of underlying ability.

Observed Performance

We assume that participant j’s observed score, S;, is determined by j’s
level of ability, A_i, plus some random error, ¢;. The random error represents
all the elements that make any single test of performance less than 100%
reliable and valid in representing underlying ability:

S;=A+ e, (1

We used a standard normal distribution for A;, representing the partici-
pants’ abilities relative to others in the population. The error term, e;, is
drawn randomly from a normal distribution with a mean of zero. The
variance of the error distribution can be manipulated to represent the
quality of the test; higher error variance represents lower reliability. Like
ability (A;), the observed score (S)) is a relative measure, having a mean of
zero. However, because of the addition of error, it has a higher variance
than A;.

Estimated Performance

Each participant estimates his or her performance on the basis of his or
her ability plus some error and possibly some overall bias:

S, = A+ z+ b ()

The error, z;, is drawn from a mean-zero, normal distribution whose
variance represents the noisiness of participants’ estimates of their relative
ability. The total bias, b,, is a function of the task. We do not distinguish
here between misestimation of one’s own absolute performance and mis-
estimation of others’ performance. Both together cause inaccuracy in the
participant’s estimate of where he or she stands in the distribution of
performance and are thus included in z; + b,.

Presentation

Figure 2 shows the results of a simulation based on Equation 2, follow-
ing the format of previous reports. Results are averaged across participants
in each of the four quartiles of observed performance score. The x-axis
shows the mean percentile of scores in the distribution of all 1,000 scores,
by quartile of score. The y-axis shows the percentile of the mean predicted

score according to where each predicted score would have fallen in the
actual observed distribution of 1,000 scores.

The particular example shown in Figure 2 represents the following
situation. The performance test has high validity, with a correlation of
approximately .80 between ability and observed performance score. Par-
ticipants find prediction to be difficult, but not impossible, with a corre-
lation of about .35 between predicted and actual score. The three lines
represent the results with no added bias (b, = 0) and with biases of *25
percentiles relative to the no-bias condition. Different parameter values
produce lines with different slopes, but they are still nearly parallel except
in extreme cases, where floor and ceiling effects produce some curvature.

Models of Unskilled—Unaware

The main goal of our simulations was to test the general pattern of
results that would be expected in the absence of any relation between
performance and ability to judge one’s performance. The simulations
confirm that the basic findings of Kruger and Dunning (1999) and our
subsequent findings with tasks of varying difficulty are consistent with that
hypothesis. However, we were also curious to see whether Kruger and
Dunning’s unskilled—unaware hypothesis would show a distinctly different
pattern.

There are numerous possible specific interpretations of the general
hypothesis that those who are least able are also least able to predict their
own relative performance. One simple and plausible instantiation of this
hypothesis is the following:

Sj = Aj + (Zj + bt)f(Aj)’ (3>

where f'is a function such that the amount of error and bias decrease as
ability increases. We modeled this using a simple linear function such that
there is no bias or error for those in the highest percentile of ability, an
average amount for those of median ability, and double the average error
and bias for those in the lowest percentile of ability. We believe this model
captures the tenor of Kruger and Dunning’s (1999, 2002) unskilled—
unaware hypothesis and Kruger’s (1999) interpretation of task difficulty
effects. It is also consistent with evidence that anchoring effects are
stronger for judgments that are more ambiguous (Jacowitz & Kahneman,
1995). Thus, if poorer performers find comparative judgments to be more
difficult to make, they may be more prone to anchoring on perceived
absolute difficulty.

Figure 3 is based on Equation 3, following the same standards as before
for the validity of the performance measure and participants’ overall ability
to predict relative performance. The results show a distinct pattern, which
seems to be different from the one we observe in the present studies.
However, we consider these findings to be exploratory only. With different
parameter values, the differences between the results of Equation 2 and
Equation 3 can be less clearly distinct, and other models of the unskilled-
unaware hypothesis are also plausible.
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